Operating a power system on 100% Distributed Resources

Challenges and paths forward

Dr Jenny Riesz – Manager – Operational DER Management
About AEMO

• AEMO is a member-based, not-for-profit organisation.
• We are the independent energy market and system operator and system planner for the National Electricity Market (NEM) and the WA Wholesale Electricity Market (WEM).
• We also operate retail and wholesale gas markets across south-eastern Australia and Victoria’s gas pipeline grid.

AEMO Services is an independent subsidiary of AEMO, established in 2021 to enable the transparent provision of advisory and energy services to National Electricity Market jurisdictions.
Distributed PV

- Significant proportion of demand now met by distributed PV
South Australia

- ~2 GW of distributed PV
- Growing at ~20 MW per month
- Supplying up to 92% of underlying demand
- Minimum operational demand record to date: 104 MW

- How do we operate a major power grid on only distributed resources?
- What challenges will arise?
- How do we address challenges, removing barriers to growth in distributed resources?
Incident: 12-19 Nov 2022

• 1639hrs on 12 November 2022: Non-credible contingency on multiple transmission lines (severe weather condition) causing synchronous separation of majority of SA power system from rest of the NEM
• Operated majority of SA as an island until 19 November 2022
• Included operation through some periods of high generation from distributed PV (DPV), necessitating DPV curtailment to maintain adequate frequency control services for power system security
• Successful operation of a giga-watt scale island power system through high DPV periods and enactment of emergency backstop DPV curtailment methods
• Many valuable learnings to improve processes and frameworks

Island operation

Main reason for DPV curtailment was to manage frequency impacts of possible DPV shake-off in response to a major fault in the South Australian island.
Distributed PV unintended disconnection

- Up to 40% of distributed PV in a region can disconnect in response to power system disturbances

Example disturbance in South Australia (3 March 2017)

Managing DPV unintended disconnections

Improve standards

- AS/NZS4777.2:2020 mandatory from Dec 2021
- Compliance???
- Will it be sufficient and effective???

Then to manage legacy systems:

Network constraints
- Operate network within stability limits, accounting for larger contingency sizes

Frequency Control
- Enable sufficient frequency reserves to manage larger contingencies

Operating procedures
- Maintain contingency sizes within limits when operating with line outages
- Revoke permission for line outages if need be
- Curtail distributed PV as last resort

Need to accurately estimate distributed PV tripping behaviour
Data!

- Significant DER behaviours interacting with grid behaviour
- Cross-matching Solar Analytics datasets with others (e.g. Tesla)
- Project MATCH
- Data, data, data!
 - Reduce uncertainty
 - More confidence in intervention measures
 - Reduce need for conservative intervention
- Care around dataset bias

Importance of data

- Significant implications
 - Planning studies
 - Real-time operations

- Uncertainty: ±25% of contingency size
 - Significant uncertainty in input datasets

- Better data required for further model improvements
 - Load composition
 - DPV behaviour
 - High speed network measurements

RMS model performance at representing load/DPV tripping in voltage disturbances:

- 8/03/2018
- 11/04/2018
- 18/02/2019
- 17/04/2019
- 22/02/2021
- 3/03/2017
- 18/01/2018
- 9/10/2018
- 3/03/2019
- 26/11/2019
- 24/01/2021
- 12/03/2021

Compliance with technical standards

- 10 manufacturers provided installation data since 1 Jan 2021
- Suggests that only ~40% are being set correctly to AS/NZS4777.2:2020 Standard
- Majority are being set to older 2015 standard
Compliance with standards

• Compliance rates vary significantly between Original Equipment Manufacturers (OEMs)

Compliance rates to 2020 standard (Q1 2022 installs in the NEM)

Disturbance ride-through behaviours

- Working with Distribution Network Service Providers, OEMs and other market bodies to address
- Immediate actions
- Enduring governance frameworks

NEM fleet projections:

- Ride through, AS4777.2 2020
- May ride through, but incorrect standard
- Ride through as per 2015 Standard
- Ride through as per 2005 Standard

AS4777 amendment prevents selection of pre-2020 standards (international still possible)

2020 becomes mandatory. Ride through anticipate in DPV that is installed with correct settings
Incident: 12-19 Nov 2022

Main reason for DPV curtailment was to manage frequency impacts of possible DPV shake-off in response to a major fault in the South Australian island.
Emergency backstop PV curtailment

• Introduced emergency capability to curtail distributed PV when required for system security
• Analogous to load shedding
• Used as a last resort, after all other measures have been exhausted
• Anticipate using very rarely
• Can be simple implementation, with more sophisticated capabilities to follow
• In parallel:
 • Explore other ways of providing essential services in minimum demand periods
 • Market development

DPV curtailment mechanisms

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Observations in 12-19 Nov 2022 event</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCADA controlled generation</td>
<td>Responded as expected</td>
</tr>
<tr>
<td>• Systems >200kW have SCADA control</td>
<td></td>
</tr>
<tr>
<td>Smarter Homes / Relevant Agents</td>
<td></td>
</tr>
<tr>
<td>• From 28 September 2020, all DPV in SA must</td>
<td>• Poor compliance observed</td>
</tr>
<tr>
<td>comply with Smarter Homes regulations and</td>
<td>• Biggest erosion of response is from</td>
</tr>
<tr>
<td>appoint a Relevant Agent responsible for</td>
<td>incorrect commissioning</td>
</tr>
<tr>
<td>managing active power from DPV systems</td>
<td>• Further reduction in response rates</td>
</tr>
<tr>
<td>during state electricity security</td>
<td>observed on 13/14 Nov due to</td>
</tr>
<tr>
<td>emergencies.</td>
<td>telecommunications outages</td>
</tr>
<tr>
<td>• 517 MW of DPV installed that should fall</td>
<td>• Widely varying responses from</td>
</tr>
<tr>
<td>under this requirement</td>
<td>different technology providers</td>
</tr>
<tr>
<td>• There are now more than 50 different</td>
<td></td>
</tr>
<tr>
<td>Relevant Agent – Technology combinations</td>
<td></td>
</tr>
<tr>
<td>requiring direction via phone-calls.</td>
<td></td>
</tr>
<tr>
<td>Enhanced Voltage Management</td>
<td>Delivered majority of response</td>
</tr>
<tr>
<td>• Increase distribution voltages to reduce</td>
<td></td>
</tr>
<tr>
<td>DPV generation</td>
<td></td>
</tr>
</tbody>
</table>
Enhanced Voltage Management

• Increase distribution voltages to reduce DPV generation
• Estimated that at least 2/3 of DPV curtailment in this event was delivered by EVM
• Would likely have been insecure without EVM, especially on 13/17/19 Nov
• Does not rely on availability of internet or telecommunications, and delivered a consistent and reliable response on 13 and 14 November during telecommunications loss
Limitations of EVM

- Observations of inverter cycling (15-20 min cycles from 10-15% of DPV systems)
- Cannot discriminate between inverters on a feeder – may have impacted FCAS delivery from VPPs
- Investigating implications for use in a system restart process
NEM operation: Essential Power System Services

With present operational toolkit, need to maintain a minimum number of synchronous generating units online at all times to provide essential system services:

- System strength, inertia, frequency control, voltage control

These units need to operate above minimum loading levels

Operational demand is projected to fall below minimum thresholds by 2024 – 2026 for the entire NEM mainland under system normal conditions

Will reach thresholds sooner during periods with line outages, regions operating as an island, or extreme conditions (e.g. bushfires, storms, explosions, etc.)
Incidence below thresholds

- Demand below thresholds occurs very rarely
- “Perfect Storm” conditions
 - Clear skies
 - Mild weather
 - Low demand (e.g. public holidays, weekends)

Forecast incidence of operational demand below secure thresholds (NEM mainland)

(a) Indicative range of operational demand below 6,000 MW across central scenario

(b) Example minimum demand day, Central projection 90% POE
DER Dispatch Integration

• Long term: Integrate DER into automated dispatch systems

- Formulating constraints incorporating DER (sub-regional zones?)
- Registrations in zones? Scaling over time?
- Device vs site bids/targets? Net or gross?
- Real-time telemetry?
Under Frequency Load Shedding

- UFLS is the “safety net”, designed to arrest severe under-frequency events
- Controlled disconnection of load in less than a second, to rebalance a large supply-demand imbalance
- Challenges identified:
 1. Reducing net load reduces UFLS effectiveness
 2. Reverse flows cause UFLS to operate in reverse, exacerbating a frequency decline
 3. Distributed PV disconnection exacerbates frequency decline
Under Frequency Load Shedding

- Total UFLS load in SA reached **-110 MW** (-152 MW on distribution network) on 21/11/2021
- Should be ~800 to 1,200 MW
- Significant reverse flows
Dynamic arming

- Disable UFLS relay when circuit is operating in reverse flows

MW load gain from dynamic arming

Dynamic arming: UFLS relays automatically disarmed when circuit is in reverse flows

No action

Smart Meters for UFLS?

- Exploring options for UFLS at the customer premise (utilising Advanced Metering Infrastructure)
How much Emergency Under Frequency Response is required?

• What contingency events are we managing in very low demand periods?
 • In low demand periods: Minimal imports and few large units online?
• If DPV shake-off is part of the contingency, how does UFLS respond?
• Cybersecurity events?
• Influence of large BESS?
Ongoing work program

• Aim to enable NEM and SWIS to operate with 100% of energy supplied by DER
• Remove barriers to DER growth
• Essential to identify and address technical challenges early
• Very difficult to remediate if action is too late
For further information

• Reports available:

DER Operations

The Operations workstream addresses the operational impacts of increasing levels of DER penetrating the electricity grid.

Its objectives are to ensure the operational systems are in place to maintain energy system security with regards to:

- Understanding how distributed resources behave during disturbances
- Developing power system models of DER and load behaviour
- Identifying and developing mitigation strategies for emerging system security challenges related to DER integration into AEMO’s operations.

Findings and references in each area are summarised in the relevant sub-page.

Work is also conducted in collaboration with transmission and distribution network service
For more information visit

aemo.com.au