

UUUU

Operating a power system on 100% Distributed Resources

*

Challenges and paths forward

Dr Jenny Riesz – Manager – Operational DER Management

About AEMO

- AEMO is a member-based, not-for-profit organisation.
- We are the independent energy market and system operator and system planner for the National Electricity Market (NEM) and the WA Wholesale Electricity Market (WEM).
- We also operate retail and wholesale gas markets across south-eastern Australia and Victoria's gas pipeline grid.

Electricity Gas Declared **Wholesale Gas Market** (DWGM) **Wholesale Electricity** Market (WEM) Short Term Trading Market (STTM) and **National Electricity Gas Supply** Market (NEM) Hub (GSH)

Distributed PV

 Significant proportion of demand now met by distributed PV

South Australia

- ~2 GW of distributed PV
- Growing at ~20 MW per month
- Supplying up to 92% of underlying demand
- Minimum operational demand record to date: 104 MW
- How do we operate a major power grid on only distributed resources?
- What challenges will arise?
- How do we address challenges, removing barriers to growth in distributed resources?

5:30:00 A/

5:30:00

7:30:00

8:30:00 A/ 9:30:00 A/

1:30:00 AV

2:30:00 AA

3:30:00

4:30:00

2:30:00 AA

0:30:00 A/ 1:30:00 A/ 3:30:00 PM 4:30:00 PM 5:30:00 PM

2:30:00 PN

2:30:00 PA 1:30:00 PA PN

6:30:00

7:30:00 PM

8:30:00

P

0:30:00

11:30:00

9:30:00 PN

Incident: 12-19 Nov 2022

- 1639hrs on 12 November 2022: Non-credible contingency on multiple transmission lines (severe weather condition) causing synchronous separation of majority of SA power system from rest of the NEM
- Operated majority of SA as an island until 19 November 2022
- Included operation through some periods of high generation from distributed PV (DPV), necessitating DPV curtailment to maintain adequate frequency control services for power system security
- Successful operation of a giga-watt scale island power system through high DPV periods and enactment of emergency backstop DPV curtailment methods
- Many valuable learnings to improve processes and frameworks

AEMO

Preliminary Report – Trip of South East – Tailem Bend 275 kV lines on 12 November 2022

A preliminary operating incident report for the National Electricity Market – information as at 23/11/2022

Island operation

Main reason for DPV curtailment was to manage frequency impacts of possible DPV shake-off in response to a major fault in the South Australian island

Distributed PV unintended disconnection

 Up to 40% of distributed PV in a region can disconnect in response to power system disturbances

Example disturbance in South Australia (3 March 2017)

AEMO (May 2021) Behaviour of distributed resources during power system disturbances, <u>https://aemo.com.au/-/media/files/initiatives/der/2021/capstone-report.pdf?la=en&hash=BF184AC51804652E268B3117EC12327A</u>

AEMO

Managing DPV unintended disconnections

Improve standards

- AS/NZS4777.2:2020 mandatory from Dec 2021
- Compliance???
- Will it be sufficient and effective????

Then to manage legacy systems:

Network constraints

• Operate network within stability limits, accounting for larger contingency sizes

Frequency Control

• Enable sufficient frequency reserves to manage larger contingencies

Operating procedures

- Maintain contingency sizes within limits when operating with line outages
- Revoke permission for line outages if need be
- Curtail distributed PV as last resort

Data!

- Significant DER behaviours interacting with grid behaviour
- Cross-matching Solar Analytics datasets with others (e.g. Tesla)
- Project MATCH
- Data, data, data!
 - Reduce uncertainty
 - More confidence in intervention measures
 - Reduce need for conservative intervention
- Care around dataset bias

AEMO (Oct 2021), Trip of multiple generators and lines in Central Queensland and associated under-frequency load shedding on 25 May 2021, <u>https://aemo.com.au/-</u> /media/files/electricity/nem/market notices and events/power syste m incident reports/2021/trip-of-multiple-generators-and-lines-in-qldand-associated-under-frequency-loadshedding.pdf?la=en&hash=F873AE26F7540FCE817AD193BAFD07D9

Importance of data

- Significant implications
 - Planning studies
 - Real-time operations
- Uncertainty: ±25% of contingency size
 - Significant uncertainty in input datasets
- Better data required for further model improvements
 - Load composition
 - DPV behaviour
 - High speed network measurements

RMS model performance at representing load/DPV tripping in voltage disturbances:

AEMO (November 2022) PSS[®]E Models for load and distributed PV in the NEM, <u>https://aemo.com.au/-/media/files/initiatives/der/2022/psse-models-for-load-and-distributed-pv-in-the-nem.pdf?la=en</u>

AEMO

Compliance with technical standards

- 10 manufacturers provided installation data since 1 Jan 2021
- Suggests that only ~40% are being set correctly to AS/NZS4777.2:2020 Standard
- Majority are being set to older 2015 standard

Proportion installs by standard (multiple OEMs)

Compliance with standards

/media/files/initiatives/der/2023/2023-04-27-compliance-of-der-with-technicalsettings.pdf?la=en&hash=19A1CACD355 65DAC69610542B2292DB3

Compliance rates to 2020 standard (Q1 2022 installs in the NEM)

Disturbance ride-through behaviours

NEM fleet projections:

- Working with Distribution Network Service Providers, OEMs and other market bodies to address
- Immediate actions
- Enduring governance frameworks

AEMC

Incident: 12-19 Nov 2022

Main reason for DPV curtailment was to manage frequency impacts of possible DPV shake-off in response to a major fault in the South Australian island

Emergency backstop PV curtailment

- Introduced emergency capability to curtail distributed PV when required for system security
- Analogous to load shedding
- Used as a last resort, after all other measures have been exhausted
- Anticipate using very rarely
- Can be simple implementation, with more sophisticated capabilities to follow
- In parallel:
 - Explore other ways of providing essential services in minimum demand periods
 - Market development

https://aemo.com.au/-

/media/files/electricity/nem/planning_and_forecasting/sa_advisory/2020/minimum-operational-

DPV curtailment mechanisms

Mechanism	Observations in 12-19 Nov 2022 event
 SCADA controlled generation Systems >200kW have SCADA control 	Responded as expected
 Smarter Homes / Relevant Agents From 28 September 2020, all DPV in SA must comply with Smarter Homes regulations and appoint a Relevant Agent responsible for managing active power from DPV systems during state electricity security emergencies. 517 MW of DPV installed that should fall under this requirement There are now more than 50 different Relevant Agent – Technology combinations requiring direction via phone- calls. 	 Poor compliance observed Biggest erosion of response is from incorrect commissioning Further reduction in response rates observed on 13/14 Nov due to telecommunications outages Widely varying responses from different technology providers
 Enhanced Voltage Management Increase distribution voltages to reduce DPV generation 	Delivered majority of response

AEMO

Enhanced Voltage Management

- Increase distribution voltages to reduce DPV generation
- Estimated that at least 2/3 of DPV curtailment in this event was delivered by EVM
- Would likely have been insecure without EVM, especially on 13/17/19 Nov
- Does not rely on availability of internet or telecommunications, and delivered a consistent and reliable response on 13 and 14 November during telecommunications loss

Limitations of EVM

- Observations of inverter cycling (15-20min cycles from 10-15% of DPV systems)
- Cannot discriminate between inverters on a feeder – may have impacted FCAS delivery from VPPs
- Investigating implications for use in a system restart process

NEM operation: Essential Power System Services

Calendar Year

Actual

····• Actual (daylight hours) Central projection (POE50) --- Central projection (POE90) Slow Change (POE50) ---- Slow Change (POE90)

Secure threshold

With present operational toolkit, need to maintain a minimum number of synchronous generating units online at all times to provide essential system services:

System strength, inertia, frequency control, voltage control

These units need to operate above minimum loading levels

Operational demand is projected to fall below minimum thresholds by 2024 – 2026 for the entire NEM mainland under system normal conditions

Will reach thresholds sooner during periods with line outages, regions operating as an island, or extreme conditions (e.g. bushfires, storms, explosions, etc.)

AEMO, ESOO 2021, Section 6.1, https://aemo.com.au/-

/media/files/electricity/nem/planning and forecasting/nem esoo/2021/2021-nemesoo.pdf?la=en&hash=D53ED10E2E0D452C79F97812BDD926ED

Incidence below thresholds

AEMO

Forecast incidence of operational demand below secure thresholds (NEM mainland)

- Demand below thresholds occurs very rarely
- "Perfect Storm"
 conditions
 - Clear skies
 - Mild weather
 - Low demand (e.g. public holidays, weekends)

(a) Indicative range of operational demand below 6,000 MW across central scenario

Multiple simulations with varying POE were run to determine the number of hours in which demand fell below 6,000 MW. This represents a wider spread of possibilities than used in Figure 24.

(b) Example minimum demand day, Central projection 90% POE

AEMO, ESOO 2021, Section 6.1, <u>https://aemo.com.au/-</u> /media/files/electricity/nem/planning_and_forecasting/nem_esoo/202 <u>1/2021-nem-</u> esoo.pdf?la=en&hash=D53ED10E2E0D452C79F97812BDD926ED

0

DER Dispatch Integration

• Long term: Integrate DER into automated dispatch systems

- Formulating constraints incorporating DER (sub-regional zones?)
- Registrations in zones? Scaling over time?
- Device vs site bids/targets? Net or gross?
- Real-time telemetry?

Under Frequency Load Shedding

- UFLS is the "safety net", designed to arrest severe under-frequency events
- Controlled disconnection of load in less than a second, to rebalance a large supply-demand imbalance
- Challenges identified:
 - 1. Reducing net load reduces UFLS effectiveness
 - 2. Reverse flows cause UFLS to operate in reverse, exacerbating a frequency decline
 - 3. Distributed PV disconnection exacerbates frequency decline

Under Frequency Load Shedding

- Total UFLS load in SA reached -110 MW (-152 MW on distribution network) on 21/11/2021
- Should be ~800 to 1,200 MW
- Significant reverse flows

AEMO

Dynamic arming

AEMO

arming.pdf?la=en&hash=C82E09BBF2A112ED014F3436A18D836C

Smart Meters for UFLS?

 Exploring options for UFLS at the customer premise (utilising Advanced Metering Infrastructure)

How much Emergency Under Frequency Response is required?

- What contingency events are we managing in very low demand periods?
 - In low demand periods: Minimal imports and few large units online?
- If DPV shake-off is part of the contingency, how does UFLS respond?
- Cybersecurity events?
- Influence of large BESS?

Ongoing work program

- Aim to enable NEM and SWIS to operate with 100% of energy supplied by DER
- Remove barriers to DER growth
- Essential to identify and address technical challenges early
- Very difficult to remediate if action is too late

For further information

Reports available:

 <u>https://aemo.com.au/</u> <u>en/initiatives/major-</u> <u>programs/nem-</u> <u>distributed-energy-</u> <u>resources-der-</u> <u>program/operations</u>

6	AEMO	Ener	rgy systems	Initiatives	Consultations	Library	Learn	Newsroom	About	٩		
NEMO • INITIATIVES • MAJOR PROGRAMS • DISTRIBUTED ENERGY RESOURCES PROGRAM • DER OPERATIONS												
Ð	Distributed Energy Resources Program		DER Operations									
	About the DER Program	>	The Operations workstream addresses the operational impacts of increasing levels of DER penetrating the electricity grid. Its objectives are to ensure the operational systems are in place to maintain energy system security with regards to:									
	Markets and Framework	+										
	DER Demonstrations	+										
	DER Operations	-										
	DER behaviour during disturbances		Understan	ding how distril	buted resources beh	nave during o	disturbanc	es		\rightarrow		
	Power system model development		Developing power system models of DER and load behaviour							\rightarrow		
	DER integration and maintaining power supply				g mitigation strateg EMO's operations.	ies for emer	ging syster	m security challer	nges related	→		
	Standards and connections	+	Findings	and reference	s in each area are	summarise	ed in the r	relevant sub-pa	ige.			
			Work is a	lso conducted	d in collaboration	with transm	nission an	d distribution n	network ser	vice		

For more information visit

aemo.com.au